DESCOBERTA

Postado em 24/01/2013

Manipulação genética cria células resistentes ao HIV em laboratório

Por meio de manipulações genéticas, cientistas conseguiram desenvolver em laboratório células do sistema imunológico resistentes ao vírus HIV. No futuro, se a eficácia da terapia genética for confirmada em testes clínicos, ela pode vir a substituir o coquetel. A estratégia envolve a inserção de genes resistentes ao vírus nas células que são o alvo do HIV, chamadas linfócitos T.

A descoberta, de pesquisadores da Escola de Medicina da Universidade de Stanford, foi publicada esta semana na revista *Molecular Therapy*, do grupo *Nature*. "Nós inativamos um dos receptores que o HIV usa para obter acesso à célula e acrescentamos novos genes para proteger contra o vírus, de forma a termos várias camadas de proteção, o que chamamos de "empilhamento"", diz o pesquisador Matthew Porteus, principal autor do estudo.

O vírus entra nos linfócitos T utilizando como porta dois tipos de proteína que ficam na superfície da célula, conhecidas como CCR5 e CXCR4. Sem esses receptores, o vírus não é capaz de entrar. Os pesquisadores quebraram a seqüência de DNA do receptor CCR5 e íá inseriram três genes conhecidos por conferirem resistência ao vírus da aids.

Depois desse verdadeiro trabalho de "recorta e cola" genético, a entrada do vírus na célula é bloqueada, o que o impediria de destruir o sistema imunológico do paciente. Os pesquisadores observam que a terapia não teria a capacidade de curar a infecção, mas sim de reproduzir o efeito do tratamento com o coquetel, com mais eficácia e menos efeitos colaterais.

TERAPIA GENÉTICA

A busca por uma terapia genética contra o HIV é algo que os cientistas buscam há mais de 20 anos, desde que a existência dos receptores do vírus foi descoberta, de acordo com o infectologista Esper Kallás, professor da Faculdade de Medicina da Universidade de São Paulo (USP) e membro da Sociedade Brasileira de Infectologia (SBI).

Ele explica que vários grupos procuram uma forma eficaz de bloquear o receptor CCR5, pois se constatou que sua inativação não compromete outras funções do organismo. "Uma pessoa que não tem CCR5 não morre, pois outras proteínas substituem seu papel; não existe um comprometimento significativo da saúde", diz Kallás, que acrescenta que uma classe de drogas anti-HIV em uso atualmente tem justamente esse princípio.

PACIENTE DE BERLIM

Mas o que realmente acendeu a esperança pelo sucesso de uma terapia genética contra o HIV foi o caso do paciente Timothy Ray Brown, americano diagnosticado com HIV em 1995. Enquanto se tratava da infecção, Brown - que vivia em Berlim - desenvolveu leucemia. Seu oncologista encontrou um doador de

SECRETARIA DE ESTADO DE PLANEJAMENTO, DESENVOLVIMENTO, CIÊNCIA, TECNOLOGIA E INOVAÇÃO

DESCOBERTA

Postado em 24/01/2013

medula óssea que possuía uma mutação genética que naturalmente protege seu portador contra o vírus.

"Depois que se encerrou o tratamento, ele teve a grata surpresa de ver que, além de ter conseguido curar a leucemia, o vírus não era mais detectado. Ele é considerado como o único caso de cura do HIV", conta Kallás. A partir desse evento, Brown ficou conhecido mundialmente como o "paciente de Berlim". Seu caso abriu as portas para a ideia antiga que se tinha de modificar a genética do paciente para tentar reproduzir os efeitos dessa mutação protetora.

Segundo o médico Olavo Henrique Munhoz Leite, coordenador da Unidade de Referência em Doenças Infecciosas Preveníveis da Faculdade de Medicina do ABC, ainda não se sabe exatamente o que permitiu a cura de Brown. "Será que deu certo porque o doador da medula era um indivíduo que tinha a mutação? Se começássemos apegar os indivíduos e fizéssemos o mesmo procedimento, os resultados seriam os mesmos? O provável é que uma somatória de fatores tenha permitido a cura."

Não é possível reproduzir a estratégia que curou o paciente de Berlim porque o transplante de medula envolve muitos riscos". Além disso, a mutação protetora é muito rara para ser encontrada em doadores de medula.

A existência da mutação Delta 32 na proteína CCR5, que protege contra o HIV, foi descoberta em 1996. Segundo Kallás, estudos mostram que ela surgiu provavelmente há cerca de 500 anos no norte da Europa. "A teoria é que a peste negra também poupava as pessoas que tinham essa mutação", diz. Ela está presente em 1% da população europeia.

Fonte: Jornal da Ciência (O Estado de São Paulo, por Mariana Lenharo)