Postado em 07/10/2013

Biovidro acelera a recuperação óssea

Quebrar um osso e reconstruí-lo é uma tarefa complicada, que leva tempo. Fica ainda mais trabalhoso quando o paciente é mais velho e sofre com a osteoporose. Para ajudar quem enfrenta esses problemas, pesquisadores da Universidade Federal de São Carlos (UFSCar) desenvolveram o **biossilicato.** O material é obtido a partir de **vidro** e é capaz de acelerar a **recuperação de lesões ósseas**. O produto foi usado em ratos e apresentou resultados animadores. Os cientistas testarão, agora, a aplicabilidade em humanos.

Desenvolvido em laboratório, o biossilicato é composto por sódio, potássio, cálcio, fósforo, oxigênio e silício. Essas substâncias são liberadas quando o biossilicato entra em contato com fluidos corpóreos, o que estimula os osteoblastos, células que induzem a regeneração óssea.

No teste, ratas foram induzidas à **menopausa** com a retirada dos ovários e lesões na tíbia. Os animais foram tratados com o biossilicato. "O tecido regenerou mais rápido e com maior organização do que o que se verificou nos animais que deixamos evoluir naturalmente, sem o biomaterial", explica Nivaldo Antonio Parizotto, professor do Departamento de Fisioterapia da UFSCar e um dos integrantes do estudo.

Segundo Parizotto, quando o uso de laser de baixa intensidade foi combinado com o biossilicato, a **regeneração** dos ossos aconteceu de forma ainda mais rápida. "Conseguimos, dessa forma, um osso ainda melhor e mais rápido depois de algum tempo de tratamento. Portanto, podemos dizer que os ossos foram regenerados de maneira mais rápida e eficiente com a associação dos dois tratamentos", diz o pesquisador.

O uso do biomaterial em humanos poderá baratear a solução de problemas em decorrência da osteoporose e de lesões graves provocadas, por exemplo, por acidentes. "Há uma grande incidência de acidentes de trânsito, além das doenças graves, como o câncer ósseo, que demandam grandes retiradas de tecidos ou causam perdas que necessitam de reposição de osso", diz Parizotto.

De acordo com o cientista, o biossilicato é uma composição melhorada do vidro em pó pelo aumento da cristalização dele. A técnica já havia sido explorada por outros pesquisadores, como Larry Hench, dos Estados Unidos, que iniciou as pesquisas nessas linhas.

APLICAÇÕES

Coordenador da Ortopedia do Hospital Israelita Albert Einstein, Mario Ferreti explica que o material criado pelos pesquisadores de São Paulo não agirá diretamente na osteoporose. "É um recurso que ajuda na formação óssea, assim como outros materiais já disponíveis no mercado, e pode vir a tratar defeitos ósseos, fraturas com defeitos importantes. Não a osteoporose, mas fratura de pacientes com a osteoporose", destaca.

SECRETARIA DE ESTADO DE PLANEJAMENTO, DESENVOLVIMENTO, CIÊNCIA, TECNOLOGIA E INOVAÇÃO

PESQUISA

Postado em 07/10/2013

O tratamento desenvolvido pela UFSCar traz esperanças também para o **tratamento da osteogênese**, doença em que a formação dos ossos se dá de maneira anômala, deixando-os frágeis e quebradiços. Para o ortopedista Antonio Vitor de Abreu, do Hospital Universitário Clementino Fraga Filho, da Universidade Federal do Rio de Janeiro (UFRJ), a osteogênese é um problema que merece cuidado e dedicação. "Conhecemos mais de 100 substâncias que prejudicam a osteogênese. Por outro lado, não conhecemos nenhum produto testado que acelere ou melhore o tratamento dessa doença. Muitas pesquisas tentam encontrar esse tipo de produto. Podemos citar a linha de células-tronco, mas tudo isso ainda está num estágio muito experimental e longe da prática médica diária", destaca o pesquisador.

Parizotto explica que ele e os demais pesquisadores envolvidos no projeto pretendem melhorar a composição do biossilicato para dar continuidade aos testes. "Estão em andamento trabalhos de análises da expressão gênica com técnicas de biologia molecular para entender melhor os mecanismos pelos quais o organismo acelera os processos (de regeneração óssea). Assim, poderemos controlar cada vez mais todos os passos de interação do biomaterial com o organismo e aperfeiçoar sua utilização", diz o pesquisador.

Fonte: Estado de Minas